
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES> VOL. 43, NO, 9, SEPTEMBER 1995 2[51

Interconnect Characterization Using

Time-Domain Reflectometry
Steven D. Corey and Andrew T. Yang

Abstract-An approach is presented for modeling board-level,

package-level, and multichip module substrate-level interconnect
circuitry based on measured time-domain reflectrometry data.
The scattering poles and residues of a multiport system are
extracted and used as a model that can be evaluated in linear time
by recursive convolution in a SPICE-based simulator. This allows
any linear or nonlinear circuits to be connected to the model
ports, and the entire circuit may be simulated in a SPICE-based
simulator. Two-port and four-port example microstrip circuits

are characterized, and the simulation results are compared with
measured data. Delay, reflection, transmission, and crosstalk are

shown to be accurately modeled in each case.

I. INTRODUCTION

A S THE RISE times of digital signals drop into the

subnanosecond range. the effects of off-chip circuitry
become increasingly important. Packaging and board-level cir-

cuitry, electrically insignificant at low frequencies, can cause

delay, crosstalk, and reflection transients. If not considered

during the design stage, these transients can cause logic

glitches which render a fabricated digital circuit inoperable,

or they can distort an analog signal such that it fails to meet

specifications. Since extra iterations in the design cycle of

a circuit are costly, accurate prediction of these effects is a

necessity.

Interconnect circuitry has traditionally been characterized

using models composed of standard linear elements such as

resistors, coupled and uncoupled inductors, and capacitors.

This approach allows a distributed network to be modeled

for a traditional simulator, and if the topology and the element

values are well-chosen, the model will accurately represent the

actual circuit within a frequency range. For simple circuits with

regular geometries, model topology and element values may

be determined manually, by inspection or by simple formulas.

For more complex circuits, automatic extraction becomes
necessary [1], [2], employing methods based on discretization

of Maxwell’s equations. However, an automatically generated

netlist can be prohibitively large, even for a circuit of modest

physical size, since the circuit must be discretized into pieces

smaller than the smallest propagating wavelength of interest.

Strategies have been proposed [3], [4] for reducing a large

netlist to an approximate transfer function, if the size of the

netlist is manageable. However, adjustment of this type of

model to match empirical data is difficult.
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Coupled and uncoupled transmission line models have been

presented as alternatives to lumped-element approximation

[5], [6]. These models are general] y derived analytically frc)m

Maxwell’s equations, subject to particular sets of boundary

conditions. While they allow effieient simulation of specific

distributed geometries without resorting to lumped equivalent

circuits, these models are not easily derived for general circuits

in which geometry and coupling vary with position in a

complicated fashion.

Modeling techniques based on numerical impulse response

data have been proposed to simulate circuits whose char-

acteristics are difficult to describe analytically. and circuits

for which extraction of lumped representations is difficult

or costly. These techniques allow measured or computed

impulse response data to be incorporated into the simulation

model. Frequency domain approaches [7], [8] are difficult

to extend to the case of arbitrary nonlinear loads, although

this was accomplished in [9]. Techniques which require full

convolution [ 10]–[ 12] can be computationally inefficient if

the system impulse response waveforms are long. A recursive

technique was proposed in [13], but was not verified against

measurement.

This paper presents a verifiable approach for modeling

interconnect circuits on printed-wire boards. IC packages,

or multichip module (MCM) substrates. Dominant scattering

poles and residues are extracted from the measured time-

domain step response waveforms of a multiport, and are

used as model parameters, This approach avoids using large

lumped-element equivalent circuits to characterize distributed

networks. and can be automated. The model which is presented

can be incorporated into a SPICE-based simulator and eval-

uated in linear time using recursive convolution. Because the

parameters are extracted from the measured response, linear

circuits with arbitrary geometry and cross-coupling, which

are often encountered in intercormects, can be characterized

without exact knowledge of their internal characteristics. Two-

port and four-port example microstrip circuits are measured,

characterized, and simulated. Comparison between simulation

results and measurement show that delay, reflection, and

crosstalk are accurately modeled by this strategy [14].

II. MODEL Extraction

In the approach presented in this paper, models are extracted

directly from the measured time-c~omain response of a circuit.

Extraction using measured data greatly decouples the modeling

process from circuit topology and geometry, ‘lrime-domain

data is used since it is well suited to analysis of digital
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circuits, which is performed primarily in the time domain to

observe nonlinear broadband effects. Scattering parameters are

employed for model formulation since they are measurable at

high frequency, and because a scattering impulse response is

typically shorter in duration than its admittance or impedance

counterpart. This makes scattering parameters preferable as a

tool for describing and working with a nearly lossless network

in the time domain, since equivalent information is contained

in fewer data points.

A. Impulse Response Approximation

If a causal linear time-invariant network is excited at t = O,

the vector of reflected voltage waves b(t) is related to the

vector of incident voltage waves a(t) according to

/

t
b(t) = s(t) @u(t) = s(’r)a(~ – T) dr. (1)

o

Discretizing (1) for use with sampled data results in

b[n] = S[n] @ a[n] = jj S[k]a[n – k]Ak. (2)

k=o

If all incident voltage waves but the one at port j are identically

zero, which implies a matched load at every port except j, (2)

reduces to the scalar relation

= ~Si3[k]aj[n - k]Ak (am= 0)~ # j). (3)

k=O

Since time-domain reflectometry (TDR) measures the incident

voltage wave aj [n] and the reflected voltage wave bi [n],
each impulse response scattering parameter Sij [n] can be

determined by deconvolving a single signal al [n] out of b,[n].
Deconvolution in discrete time is the inverse of the operation

in (3).

Although deconvolution may theoretically be performed in

the sampled time domain or in the sampled frequency domain,

neither approach, when applied directly, gives an accurate

approximation of the impulse response. This is due to the ill-

conditioning of the deconvolution problem [15], which allows

measurement noise to dominate the solution. In this work,

suboptimal filtering [15] was used to improve the conditioning

of deconvolution, according to the relationship

FFT(diff(bi [n])) ~(jo)
Sij (~Q) = FFT(diff(aj [~])) “ (4)

The difference function was applied to each of the signals to

obtain a time-limited signal to which the FFT could be applied.

The smoothing filter If(jfl) is used to window out noise

which is introduced at frequencies past the noise threshold
of aj [n]. This noise is introduced because both spectra are

approximately zero at these frequencies, causing the ratio of

the two signals to vary unpredictably. In general 17(jfl) is a

low-pass filter with a cutoff frequency near the noise floor of

CLj [n].

Deconvolution was also implemented by discrete differen-

tiation of the TDR step response

S,j [n] = diff(bi [n]) (5)

in some cases where the input rise time was much less than

the output rise time, since for these cases the input step aj [n]

approaches an ideal step. Both approaches yield an impulse

response approximation whose valid frequency range depends

on the following parameters: the frequency content of the input

step a~ [n], the frequency response of the measurement system,

or the sampling frequency of the acquired waveforms. The

most restrictive of these three constraints determines the upper

limit of the valid frequency range.

B. Exponential Approximation of Impulse Response

A network of resistors, inductors, capacitors, and coupled

inductors can be expressed mathematically as a system of

linear constant-coefficient differential equations. Therefore, an

element of its scattering impulse response matrix is of the form

s(t) = k06(t) + kleplt + . . . + knep”t (real(p) < O) (6)

where the k, and pi are the residues and poles, respectively,

of the network. If n is allowed to approach infinity, (6) can

also be the impulse response of a distributed network, since a

linear distributed element can be decomposed into infinitesimal

linear elements. However, the effect of the function s(t)

over a finite frequency range can be approximated by a

smaller sum composed of the terms in (6) whose poles

lie near the frequencies of interest. Therefore, if s(t) is

the time-domain scattering response waveform of a linear,

time-invariant (and possibly distributed) network, then its

scattering impulse response over a finite frequency range can

be accurately modeled by a finite sum of m < n exponentials.

Similarly, Prony’s method [16], [17] allows an evenly-

sampled discrete sequence s [k] to be approximated as samples

of a function of the form

s(t) = klePIL + kZeP2t + . . . + kn–lep”-lt + knepnt. (7)

After the poles p. of the function are found by means of a

Pad6 approximation [18] in the z domain, the residues k, are

optimized by linear least squares. Prony’s method was used in

this work to determine the scattering poles and residues of a

circuit from its time-domain scattering impulse response.

One difference between (6) and (7), the absence of ko6(t) in

the latter, is trivial because a delta function, which implies un-

limited frequency content, will not be encountered in measured

data. In reality, the valid bandwidth of the impulse-response

approximation is limited as discussed in Section II-A. The

other difference, discussed in Section II-C, is that (6) requires

that real(p) < 0.

C. Asymptotic Stability

The simulation model is composed of equations of the form

(7). If-it is to be physically meaningful and asymptotically

stable, the poles must all have negative real parts. However,

Prony’s method places no constraints on the poles it extracts,
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and may on occasion extract positive poles. Since positive

poles are nonphysical and are problematic in transient simu-

lation, they are removed from the set of extracted poles prior

to residue optimization. Once the residues corresponding to

the negative poles are found, the positive poles are considered

to have been extraneous if the fit is sufficient in terms of

RMS error. This is often the case, because positive poles

modeling a waveform which decays to zero are often of very

small magnitude, or scaled by extremely small residues, and

therefore have an insignificant effect on the waveform. If the fit

is poor, then either the positive poles contributed a necessary

component to the waveform, or the pole extraction was poorly

conditioned [17], and a new set must be re-extracted under

different conditions.

D. Refinement of dc Asymptote

To improve the accuracy of the multiport model it is helpful

to ensure that the steady-state scattering parameters match the

measured steady-state values. The steady-state scattering step

response at a circuit port under matched-Ioad conditions is

given by

m

13(t ~ co) – b(0) = [a(t ~ co) – a(0)] ~ s(t) dt (8)
o

which is the area under the associated impulse response

waveform scaled by the magnitude of the input step. However,

there is no guarantee that the sum of exponential chosen as

a model to interpolate the sampled impulse response wave-

form achieves exactly the same steady-state value as the true

impulse response of the system when both are integrated. In

practice it was observed that the integrals may vary by as

much as 5’%0even if the RMS error between the measured and

modeled impulse responses is less than 0.1 %. If the area under

the modeling impulse response waveform differs significantly

from the area under the true impulse response waveform, then

the simulated results will not match the measured results at

dc. The simulated circuit may appear more or less 10SSYthan

the actual circuit, or it may even exhibit a dc gain, which is

impossible for a passive circuit.

In order to achieve the correct steady-state response, we

must explicitly ensure that the integral of each element of the

modeling scattering matrix at dc is close to the integral of the

corresponding element of the actual scattering matrix at dc.

This effectively matches the zeroth Laplace-domain moment

of the model to the measured value of the zeroth moment.

Because TDR data provides the scattering step response of a

system, the steady state ratio of reflected voltage to incident

voltage provides a good measure of the zeroth moment of the

actuat system. Matching the zeroth moment of the model to

the measured zeroth moment is achieved numerically during

optimization of the residues ki by including

as part of the least squares formulation, where bfi~ and a., are

measured steady-state values, and p; are the extracted poles.

Equation (9) is a restatement of (8) in which the integral of the

true impulse response of the system has been replaced by the

integral of the sum of exponential that models the impulse

response. Additionally, the values of a(0) and b(0) have been

set to zero.
Equation (9) matches the model dc response with the

measured dc response at minor expense to the high-frequency

fit. RMS simulation accuracy is improved, since digital signals

consist primarily of rapid transitions between steady-state

values. This method ensures that the model is passive at dc by

matching its steady-state response to that of the actual circuit

which is known to be passive. At the same time, it prevents

the model from appearing more or less lossy than the circuit

it represents.

III. SIMULATION ALGORITHM

If the scattering poles and residues of a network are known,

then the response of the network for any excitations and

terminations may be simulated. For a SPICE-based simulator,

a mapping step is necessary at each timepoint to map scattering

parameters into admittance parameters. Previous approaches

have introduced negative resistances [11] or current-controlled

voltage sources (CCVS) [13] to perform the mapping. Adding

a resistance in series with each port node of an n-port element

introduces n additional nodes to the circuit matrix. Adding

a CCVS in series at each port introduces n nodes and n

current variables for a total of 2n additional nodes. This section

outlines how to perform the mlapping algebraically before

updating the circuit matrix, which simplifies the algorithm and

requires no additional circuit nocles or variables.

It was shown in [19], [20] that if the admittance parameters

of a multiport are given by a matrix of weighted

exponentials, the discrete convolution relationship

k

ik=y @7)= E Ymv&m(At)m

sums of

(lo)
Tn=i)

may be reduced to a simple linear update at each timepoint

k, such that

i~ = GkVk + io,k. (11)

The variables Gk and io,k represent a time-dependent con-

ductance matrix and an independent current source vector,

respectively. They are evaluated at each timepoint based on

the system poles and residues, and the voltages at the previous

two timepoints. The number of operations required to find Gk

and io,~ depends only on the number of terms in the sums

of exponential, so that the convolution can be performed in

order k operations, while the general convolution sum may

require up to order k 2. Since it is not necessary to store large

portions of the past history of the circuit, memory usage is

also reduced.
If instead of the admittance parameters we are given the

scattering parameters of a muhtiport in terms of sums of

exponentials, the convolution relation in (2) may be reduced

to a similar linear update at the ,kth timestep

bk = rkak + bo,k. (12)



2154 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO, 9, SEPTEMBER 1995

The incident voltage waves a and the reflected voltage waves b

are related to the current and voltage according to the relations

0, = ;(V+Ye–%)

b = :(v – YO-li) (13)

where Y. is the diagonal characteristic admittance matrix used

to normalize the scattering parameters. Substituting (13) into

(12) at the kth timestep gives

i,+ = yo(~+rk)–l(~ – r~)’t)k – 2YO(~+r~)–lb0,~ (14)
\ / \ /

Gk —~o,k

where 1 is the n x n identity matrix. Comparing (14) with

(11) results in

Gk = YO(I+ rk)-’(~ – rk) (15)

il),k = –2YO(I + rk)–lbo, k. (16)

This mapping allows the convolution to be performed in linear

time given the scattering-parameter poles and residues and the

characteristic admittance matrix of the model, The model can

be easily implemented in a SPICE-based simulator because it

is implemented in the circuit matrix as conductors and current

sources.

Because the n conductors and n current sources in (15)

and (16) are connected between existing circuit nodes, they

introduce no variables to the circuit matrix. This represents a

time savings over methods which utilize series resistances or

CCVS elements. Although the inversion of an n x n matrix

at each timepoint is implicit in the equations, this matrix is

typically much smaller than the IV x N (sparse) matrix which

must be inverted, where N is the number of nodes in the

entire netlist.

IV. RESULTS

In this section, two example circuits are characterized: the

first is a two-port transmission line circuit with a disconti-

nuity. Reflection and transmission are simulated for various

terminations and compared with measured results. The second

example consists of a pair of tightly-coupled nonuniform

microstrip lines. Reflection, transmission, and crosstalk are

simulated for various terminations and the results are com-

pared with measured data.

TDR measurements were made with a Tektronix 11801A

Digital Sampling Oscilloscope and SD-24 TDR Sampling

Head connected to a personal computer. The TDR is connected

to the device under test (DUT) by 50 Q 2+.02 ns coaxial lines.

Model implementation and circuit simulation were performed

using MISIM 3.0 [21].

A. Two-Port Microstrip Circuit

The two-port microstrip circuit in Fig, 1 was characterized

according to the method presented in Section II of this paper.

The circuit consists of two lengths of 50 Q transmission line

connected by a short piece of soldered wire, and has a 50 0

50 c1
port 1 port 2

f r

Fig. 1. Two-port microstrip example circuit. The physical distance between

ports 1 and 2 is approximately 14 cm.

3* ‘2X2 k-l

Fig. 2. Circuit used to generate simulation data for comparison with mea-

sured data from the two-port circuit in Fig. 1.

SMA coaxial connector at each end. The physical length of

the circuit is about 14 cm.

To measure the incident step, the DUT was removed from

the measurement setup, and the reflection was measured with

the 50 Q cable unterminated. This method provides a good

approximation to the incident voltage wave, since r x 1 for

the unterminated cable at these frequencies.

To compute each impulse response waveform, the incident

signal aj [n] and the reflected signal b, [n] were differentiated in

discrete time to obtain time-limited signals, and deconvohttion

was performed in the frequency domain by dividing the FFT’s

of the two signals. The result was transformed back into the

time domain by the inverse FFT, and a 10th-order low pass

Butterworth filter with WC = 2 x 1011 rad/s was applied to

reduce the effect of the ill-conditioning discussed in Section

A. Due to the ideal delay present in the system, 36 poles were

necessary to represent the reflection waveform at port 1 to

within 1‘%o accuracy. The pole-residue pairs of the scattering

parameters, together with the characteristic admittance matrix,

constitute the model.

In order to evaluate the accuracy of the extracted model of

the circuit in Fig. 1, the model was inserted into the circuit

shown in Fig. 2 for simulation. Port 1 was dk-iven by a step

input through a 50 Q input resistance, and port 2 was termi-

nated by resistance RL. Fig. 3(a) compares simulated voltage

at port 1 for RL = 50 kfl with TDR data measured with port

2 unterminated. Fig. 3(b) compares simulated voltage at port 1

for RL = 0.001 Q with TDR data measured when port 2 was

short-circuited. Delay and reflection are accurately modeled in

both simulated waveforms, and successive reflections caused
by the mismatched load at port 2 are accurately represented.

Fig. 3(c) compares simulated transmitted voltage at port 2 for

RL = 50 Q with transmission data measured under the same

conditions.

B. Four-Port Microstrip Circuil

The four-port microstrip circuit in Fig, 4 consists of two

mirrored striplines of varying width terminated at each end by

50 Q SMA coaxial connectors. There is no ground plane under

the majority of each microstrip run, which allows significant

crosstalk between the two lines. The physical length of each
ran is about 14 cm. Because the slope of the input step
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Fig. 3. Comparison of simulated and measured data for circuit in Fig. 1.

(a) Open-circuit reflection at port 1. (b) Short-circuit reflection at port 1. (c)

Matched-load transmission at port 2.

was steep compared to the response waveform features being

modeled, tie input step was taken to be an ideal step, and

discrete differentiation was used to approximate the impulse

response. As shown in Fig. 5, 33 poles were required to capture

the detail of the reflection waveform at port 1, although as few

as 12 were sufficient to model the major effects. Although the

12-pole response is seen to diverge slightly from the 33-pole

response and the measured response, both generated responses

converge to zero at dc. The measured reflection converges to

a small negative value at dc due to a slightly mismatched load

at port 2.

In order to evaluate the accuracy of the extracted model, it

was inserted into the circuit shown in Fig. 6. Port 1 was driven

by a step input through a 500 input impedance, port 2 was

terminated by RL = 50 kf? and ports 3 and 4 were terminated

by 50 Q resistors. Fig, 7 compares simulation results for

reflection at port 1 and crosstalk at port 4 with measured

results for which port 2 was unterminated. The simulated and

measured curves are nearly overlapping at the scale shown.

50 .(2

port 4

port 1
2

Fig. 4.

ports 1

s
g,

~~
Four-port rnicrostrip example circuit. The physical distance between

and 2 is approximately 14 cm.

measured — 33-pola --- 12-pole ------

1001

80

L——60;,
t!

40

20

0 -.. ------------- -----------. .

-20-.

10 15

time! (ns)

Fig. 5. Comparison of measured s I I (t) step response with those generated

by direct convolution from 12-pole and 33-pole impulse response approxi-

mations.

z~ . 50L2
5

1

T ,3

2

S4X4
‘In J

1

RL

3 4
= =

50L2 50L2

= = v

Fig. 6. Circuit used to generate simulaticm data for comparison with mea-
sured data from the four-port circuit in Fig. 4.

vl_aim - - – vl_rrreas —

600 ‘I
v4_aim ----- va--meas. . . .

200 r

ok----:-------:-----
o 5 10 15 20 25 T

time (ns)

Fig. 7. Open-circuit reflection at port 1 and crosstatk at port 4 for the circuit
in Fig. 4.

V. CONCLUSION

This paper presented a general iipproach for characterizing

interconnect circuitry at the board, package, and MCM sub-

strate levels using measured time-clomain data. The technique

uses the dominant scattering poles ,and residues extracted from

TDR data as parameters for a circuit model, and can lbe

automated. The model may be implemented in a SPICE-based

simulator, and is evaluated in linear time. The approach models

delay and reflection introduced by interconnects, as well as

crosstalk between multiple conductors of varying geometries,
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as accurately as these effects can be measured. As a result,

large lumped-element models are not necessary to represent

distributed interconnect networks for which time-domain data

is available. Two-port and four-port example microstrip cir-

cuits were measured, characterized, and simulated, and the

results were compared with measured data to demonstrate the

validity of the approach.
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