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Interconnect Characterization Using
Time-Domain Reflectometry

Steven D. Corey and Andrew T. Yang

Abstract—An approach is presented for modeling board-level,
package-level, and multichip module substrate-level interconnect
circuitry based on measured time-domain reflectrometry data.
The scattering poles and residues of a multiport system are
extracted and used as a model that can be evaluated in linear time
by recursive convolution in a SPICE-based simulator. This allows
any linear or nonlinear circuits to be connected to the model
ports, and the entire circuit may be simulated in a SPICE-based
simulagtor. Two-port and four-port example microstrip circuits
are characterized, and the simulation results are compared with
measured data. Delay, reflection, transmission, and crosstalk are
shown to be accurately modeled in each case.

I. INTRODUCTION

S THE RISE times of digital signals drop into the

subnanosecond range, the effects of off-chip circuitry
become increasingly important. Packaging and board-level cir-
cuitry, electrically insignificant at low frequencies, can cause
delay, crosstalk, and reflection transients. If not considered
during the design stage, these transients can cause logic
glitches which render a fabricated digital circuit inoperable,
or they can distort an analog signal such that it fails to meet
specifications. Since extra iterations in the design cycle of
a circuit are costly, accurate prediction of these effects is a
necessity.

Interconnect circuitry has traditionally been characterized
using models composed of standard linear elements such as
resistors, coupled and uncoupled inductors, and capacitors.
This approach allows a distributed network to be modeled
for a traditional simulator, and if the topology and the element
values are well-chosen, the model will accurately represent the
actual circuit within a frequency range. For simple circuits with
regular geometries, model topology and element values may
be determined manually, by inspection or by simple formulas.
For more complex circuits, automatic extraction becomes
necessary [1], [2]. employing methods based on discretization
of Maxwell’s equations. However, an automatically generated
netlist can be prohibitively large, even for a circuit of modest
physical size, since the circuit must be discretized into pieces
smaller than the smallest propagating wavelength of interest.
Strategies have been proposed [3], [4] for reducing a large
netlist to an approximate transfer function, if the size of the
netlist is manageable. However, adjustment of this type of
model to match empirical data is difficult.
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Coupled and uncoupled transmission line models have been
presented as alternatives to lumped-element approximation
[5], [6]. These models are generally derived analytically from
Maxwell’s equations, subject to particular sets of boundary
conditions. While they allow efficient simulation of specific
distributed geometries without resorting to lumped equivalent
circuits, these models are not easily derived for general circuits
in which geometry and coupling vary with position in a
complicated fashion.

Modeling techniques based on numerical impulse response
data have been proposed to simulate circuits whose char-
acteristics are difficult to describe analytically, and circuits
for which extraction of lumped representations is difficult
or costly. These techniques allow measured or computed
impulse response data to be incorporated into the simulation
model. Frequency domain approaches [7], [8] are difficult
to extend to the case of arbitrary nonlinear loads, although
this was accomplished in [9]. Techniques which require full
convolution [10]-{12] can be computationally inefficient if
the system impulse response waveforms are long. A recursive
technique was proposed in [13], but was not verified against
measurement.

This paper presents a verifiable approach for modeling
interconnect circuits on printed-wire boards. IC packages,
or multichip module (MCM) substrates. Dominant scattering
poles and residues are extracted from the measured time-
domain step response waveforms of a multiport, and are
used as model parameters. This approach avoids using large
lumped-element equivalent circuits to characterize distributed
networks, and can be automated. The model which is presented
can be incorporated into a SPICE-based simulator and eval-
uated in linear time using recursive convolution. Because the
parameters are extracted from the measured response, linear
circuits with arbitrary geometry and cross-coupling, which
are often encountered in interconnects, can be characterized
without exact knowledge of their internal characteristics. Two-
port and four-port example microstrip circuits are measured,
characterized, and simulated. Comparison between simulation
results and measurement show that delay, reflection, and
crosstalk are accurately modeled by this strategy {14].

II. MODEL EXTRACTION

In the approach presented in this paper, models are extracted
directly from the measured time-domain response of a circuit.
Extraction using measured data greatly decouples the modeling
process from circuit topology and geometry. Time-domain
data is used since it is well suited to analysis of digital
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circuits, which is performed primarily in the time domain to
observe nonlinear broadband effects. Scattering parameters are
employed for model formulation since they are measurable at
high frequency, and because a scattering impulse response is
typically shorter in duration than its admittance or impedance
counterpart. This makes scattering parameters preferable as a
tool for describing and working with a nearly lossless network
in the time domain, since equivalent information is contained
in fewer data points.

A. Impulse Response Approximation

If a causal linear time-invariant network is excited at ¢ = 0,
the vector of reflected voltage waves b(¢) is related to the
vector of incident voltage waves a(t) according to

b(t) = S(t) ® a(t) = /0 S()alt =) dr. (1)

Discretizing (1) for use with sampled data results in

bln] = Sn] @ afn] = > _ S[klaln — KAk (2)

k=0
If all incident voltage waves but the one at port j are identically
zero, which implies a matched load at every port except 7, (2)
reduces to the scalar relation

b[n] = Syn] @ a; [n]

= iSi][k']aj[n —klIAE (am=0,m#7). (3

k=0

Since time-domain reflectometry (TDR) measures the incident
voltage wave aj[n] and the reflected voltage wave b;[n],
each impulse response scattering parameter S;;[n] can be
determined by deconvolving a single signal a,[n] out of b,[n].
Deconvolution in discrete time is the inverse of the operation
in (3).

Although deconvolution may theoretically be performed in
the sampled time domain or in the sampled frequency domain,
neither approach, when applied directly, gives an accurate
approximation of the impulse response. This is due to the ill-
conditioning of the deconvolution problem [15], which allows
measurement noise to dominate the solution. In this work,
suboptimal filtering [15] was used to improve the conditioning
of deconvolution, according to the relationship

. FET(diff(b;[n])) ., .
Sia(590) = FFT(diff(a, [n])) - V" X
The difference function was applied to each of the signals to
obtain a time-limited signal to which the FFT could be applied.
The smoothing filter H(j2) is used to window out noise
which is introduced at frequencies past the noise threshold
of a,[r]. This noise is introduced because both spectra are
approximately zero at these frequencies, causing the ratio of
the two signals to vary unpredictably. In general H(;jQ) is a
low-pass filter with a cutoff frequency near the noise floor of
a;[n].
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Deconvolution was also implemented by discrete differen-
tiation of the TDR step response

5.4[n] = diff(bi[n]) )

in some cases where the input rise time was much less than
the output rise time, since for these cases the input step a,[n]
approaches an ideal step. Both approaches yield an impulse
response approximation whose valid frequency range depends
on the following parameters: the frequency content of the input
step a,[n], the frequency response of the measurement system,
or the sampling frequency of the acquired waveforms, The
most restrictive of these three constraints determines the upper
limit of the valid frequency range.

B. Exponential Approximation of Impulse Response

A network of resistors, inductors, capacitors, and coupled
inductors can be expressed mathematically as a system of
linear constant-coefficient differential equations. Therefore, an
element of its scattering impulse response matrix is of the form

s(t) = kob(t) + k1eP** + -+ + kPt (real(p) < 0)  (6)

where the &, and p; are the residues and poles, respectively,
of the network. If n is allowed to approach infinity, (6) can
also be the impulse response of a distributed network, since a
linear distributed element can be decomposed into infinitesimal
linear elements. However, the effect of the function s(t)
over a finite frequency range can be approximated by a
smaller sum composed of the terms in (6) whose poles
lie near the frequencies of interest. Therefore, if s(¢) is
the time-domain scattering response waveform of a linear,
time-invariant (and possibly distributed) network, then its
scattering impulse response over a finite frequency range can
be accurately modeled by a finite sum of m < n exponentials.

Similarly, Prony’s method [16], [17] allows an evenly-
sampled discrete sequence s[k] to be approximated as samples
of a function of the form

S(t) = kleplt + erpzt 4+ o0+ kn_lepn—lf + &, ePnt (7

After the poles p, of the function are found by means of a
Pad€ approximation [18] in the z domain, the residues &, are
optimized by linear least squares. Prony’s method was used in
this work to determine the scattering poles and residues of a
circuit from its time-domain scattering impulse response.

One difference between (6) and (7), the absence of kgd(t) in
the latter, is trivial because a delta function, which implies un-
limited frequency content, will not be encountered in measured
data. In reality, the valid bandwidth of the impulse-response
approximation is limited as discussed in Section II-A. The
other difference, discussed in Section II-C, is that (6) requires
that real(p) < 0.

C. Asymptotic Stability

The simulation model is composed of equations of the form
(7). If it is to be physically meaningful and asymptotically
stable, the poles must all have negative real parts. However,
Prony’s method places no constraints on the poles it extracts,
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and may on occasion extract positive poles. Since positive
poles are nonphysical and are problemdtic in transient simu-
lation, they are removed from the set of extracted poles prior
to residue optimization. Once the residues corresponding to
the negative poles are found, the positive poles are considered
to have been extraneous if the fit is sufficient in terms of
RMS error. This is often the case, because positive poles
modeling a waveform which decays to zero are often of very
small magnitude, or scaled by extremely small residues, and
therefore have an insignificant effect on the waveform. If the fit
is poor, then either the positive poles contributed a necessary
component to the waveform, or the pole extraction was poorly
conditioned [17], and a new set must be re-extracted under
different conditions.

D. Refinement of dc Asymptote

To improve the accuracy of the multiport model it is helpful
to ensure that the steady-state scattering parameters match the
measured steady-state values. The steady-state scattering step
response at a circuit port under matched-load conditions is
given by

b(t — 00) — b(0) = [a(t — o0) — a(0)] /000 s(t)dt  (8)

which is the area under the associated impulse response
waveform scaled by the magnitude of the input step. However,
there is no guarantee that the sum of exponentials chosen as
a model to interpolate the sampled impulse response wave-
form achieves exactly the same steady-state value as the true
impulse response of the system when both are integrated. In
practice it was observed that the integrals may vary by as
much as 5% even if the RMS error between the measured and
modeled impulse responses is less than 0.1%. If the area under
the modeling impulse response waveform differs significantly
from the area under the true impulse response waveform, then
the simulated results will not match the measured results at
dc. The simulated circuit may appear more or less lossy than
the actual circuit, or it may even exhibit a dc gain, which is
impossible for a passive circuit.

In order to achieve the correct steady-stdate response, we
must explicitly ensure that the integral of each element of the
modeling scattering matrix at dc is close to the integral of the
corresponding element of the actual scattering matrix at dc.
This effectively matches the zeroth Laplace-domain moment
of the model to the measured value of the zeroth moment.
Because TDR data provides the scattering step response of a
system, the steady state ratio of reflected voltage to incident
voltage provides a good measure of the zeroth moment of the
actual system. Matching the zeroth moment of the model to
the measured zeroth moment is achieved numerically during
optimization of the residues k; by including

= Dt — _ZCJ_) = %
A (;kle )dt Z ( p. Qss ®

?

as part of the least squares formulation, where b5 and ags are
measured steady-state values, and p; are the extracted poles.
Equation (9) is a restatement of (8) in which the integral of the
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true impulse response of the system has been replaced by the
integral of the sum of exponentials that models the impulse
response. Additionally, the values of a(0) and 5(0) have been
set to zero.

Equation (9) matches the model dc response with the
measured dc response at minor expense to the high-frequency
fit. RMS simulation accuracy is improved, since digital signals
consist primarily of rapid transitions between steady-state
values. This method ensures that the model is passive at dc by
matching its steady-state response to that of the actual circuit
which is known to be passive. At the same time, it prevents
the model from appearing more or less lossy than the circuit
it represents.

III. SIMULATION ALGORITHM

If the scattering poles and residues of a network are known,
then the response of the network for any excitations and
terminations may be simulated. For a SPICE-based simulator,
a mapping step is necessary at each timepoint to map scattering
parameters into admittance parameters. Previous approaches
have introduced negative resistances [11] or current-controlled
voltage sources (CCVS) [13] to perform the mapping. Adding
a resistance in series with each port node of an n-port element
introduces n additional nodes to the circuit matrix. Adding
a CCVS in series at each port introduces n nodes and n
current variables for a total of 2n additional nodes. This section
outlines how to perform the mapping algebraically before
updating the circuit matrix, which simplifies the algorithm and
requires no additional circuit nodes or variables.

It was shown in [19], [20] that if the admittance parameters
of a multiport are given by a matrix of weighted sums of
exponentials, the discrete convolution relationship

k
k=Y Qu=> Yuvr m(At)n

m=0

(10)

may be reduced to a simple linear update at each timepoint
k, such that

i = Grop + iO,k- (11
The variables G, and g represent a time-dependent' con-
ductance matrix and an independent current source vector,
respectively. They are evaluated at each timepoint based on
the system poles and residues, and the voltages at the previous
two timepoints. The number of operations required to find G,
and Zg depends only on the number of terms in the sums
of exponentials, so that the convolution can be performed in
order k operations, while the general convolution sum may
require up to order k2. Since it is not necessaty to store large
portions of the past history of the circuit, memory usage is
also reduced.

If instead of the admittance parameters we are given the
scattering parameters of a multiport in terms of sums of
exponentials, the convolution relation in (2) may be reduced
to a similar linear update at the kth timestep

by = 'kar + bo k- (12)
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The incident voltage waves a and the reflected voltage waves b
are related to the current and voltage according to the relations

a= %(fu + Y5h)

1
b= =(v- Yy k)

3 (13)

where Y} is the diagonal characteristic admittance matrix used
to normalize the scattering parameters. Substituting (13) into
(12) at the kth timestep gives

iv = Yol +T%) 7 ( = Ti) v — 2Yo(L +T%) ""ho s (14)

v N~

Gk _'io,k

where I is the n X n identity matrix. Comparing (14) with
(11) results in

G = Y()(I+ Fk)_l(f — I‘k)
iO,k = —2Y0(I+ I‘k)_lbo,k.

5)
(16)

This mapping allows the convolution to be performed in linear
time given the scattering-parameter poles and residues and the
characteristic admittance matrix of the model. The model can
be easily implemented in a SPICE-based simulator because it
is implemented in the circuit matrix as conductors and current
sources.

Because the n conductors and n current sources in (15)
and (16) are connected between existing circuit nodes, they
introduce no variables to the circuit matrix. This represents a
time savings over methods which utilize series resistances or
CCVS elements. Although the inversion of an n X n matrix
at each timepoint is implicit in the equations, this matrix is
typically much smaller than the N x N (sparse) matrix which
must be inverted, where N is the number of nodes in the
entire netlist.

IV. RESULTS

In this section, two example circuits are characterized: the
first is a two-port transmission line circuit with a disconti-
nuity. Reflection and transmission are simulated for various
terminations and compared with measured results. The second
example consists of a pair of tightly-coupled nonuniform
microstrip lines. Reflection, transmission, and crosstalk are
simulated for various terminations and the results are com-
pared with measured data.

TDR measurements were made with a Tektronix 11801A
Digital Sampling Oscilloscope and SD-24 TDR Sampling
Head connected to a personal computer. The TDR is connected
to the device under test (DUT) by 50 €2, 24.02 ns coaxial lines.
Model implementation and circuit simulation were performed
using MISIM 3.0 [21].

A. Two-Port Microstrip Circuit

The two-port microstrip circuit in Fig. 1 was characterized
according to the method presented in Section II of this paper.
The circuit consists of two lengths of 50 € transmission line
connected by a short piece of soldered wire, and has a 50
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50 Q
port f/

Fig. 1. Two-port microstrip example circuit. The physical distance between
ports 1 and 2 is approximately 14 cm.

50%
port 2

v

Zp = 508
32x2

1

R

Fig. 2. Circuit used to generate simulation data for comparison with mea-
sured data from the two-port circuit in Fig. 1.

SMA coaxial connector at each end. The physical length of
the circuit is about 14 cm.

To measure the incident step, the DUT was removed from
the measurement setup, and the reflection was measured with
the 50 €2 cable unterminated. This method provides a good
approximation to the incident voltage wave, since I ~ 1 for
the unterminated cable at these frequencies.

To compute each impulse response waveform, the incident
signal a,[n] and the reflected signal b, [n] were differentiated in
discrete time to obtain time-limited signals, and deconvolution
was performed in the frequency domain by dividing the FFT’s
of the two signals. The result was transformed back into the
time domain by the inverse FFT, and a 10th-order low pass
Butterworth filter with w, = 2 x 10! rad/s was applied to
reduce the effect of the ill-conditioning discussed in Section
A. Due to the ideal delay present in the system, 36 poles were
necessary to represent the reflection waveform at port 1 to
within 1% accuracy. The pole-residue pairs of the scattering
parameters, together with the characteristic admittance matrix,
constitute the model.

In order to evaluate the accuracy of the extracted model of
the circuit in Fig. 1, the model was inserted into the circuit
shown in Fig. 2 for simulation. Port 1 was driven by a step
input through a 50  input resistance, and port 2 was termi-
nated by resistance Ry,. Fig. 3(a) compares simulated voltage
at port 1 for Ry, = 50 k) with TDR data measured with port
2 unterminated. Fig. 3(b) compares simulated voltage at port 1
for Ry, = 0.001 € with TDR data measured when port 2 was
short-circuited. Delay and reflection are accurately modeled in
both simulated waveforms, and successive reflections caused
by the mismatched load at port 2 are accurately represented.
Fig. 3(c) compares simulated transmitted voltage at port 2 for
Ry = 50 Q with transmission data measured under the same
conditions.

B. Four-Port Microstrip Circuit

The four-port microstrip circuit in Fig. 4 consists of two
mirrored striplines of varying width terminated at each end by
50 © SMA coaxial connectors. There is no ground plane under
the majority of each microstrip run, which allows significant
crosstalk between the two lines. The physical length of each
run is about 14 cm. Because the slope of the input step
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Fig. 3: Comparison of simulated and measured data for circuit in Fig. 1.
(a) Open-circuit reflection at port 1. (b) Short-circuit reflection at port 1. (c)
Matched-load transmission at port 2.

was steep compared to the response waveform features being
modeled, the input step was taken to be an ideal step, and
discrete differentiation was used to approximate the impulse
response. As shown in Fig. 5, 33 poles were required to capture
the detail of the reflection waveform at port 1, although as few
as 12 were sufficient to model the major effects. Although the
12-pole Tesponse is seen to diverge slightly from the 33-pole
response and the measured response, both generated responses
converge to zero at dc. The measured reflection converges to
a small negative value at dc due to a slightly mismatched load
at port 2. \

In order to evaluate the accuracy of the extracted model, it
was inserted into the circuit shown in Fig. 6. Port 1 was driven
by a step input through a 50 2 input impedance, port 2 was
terminated by Ry, = 50 k2, and ports 3 and 4 were terminated
by 50 € resistors. Fig. 7 compares simulation results for
reflection at port 1 and crosstalk at port 4 with measured
results for which port 2 was unterminated. The simulated and
measured curves are nearly overlapping at the scale shown.
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Fig. 4. Four-port microstrip example circuit. The physical distance between
ports 1 and 2 is approximately 14 cm.

measured 33-pole- ~ -  12-pole------
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E
o
=4
s
°
>
15

time (ns)

Fig. 5. Comparison of measured s11(t) step response with those generated
by direct convolution from 12-pole and 33-pole impulse response approxi-
mations.

Zy =50Q2
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Fig. 6. Circuit used to generate simulation data for comparison with mea-
sured data from the four-port circuit in Fig. 4.
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Fig. 7. Open-circuit reflection at port 1 and crosstalk at port 4 for the circuit
in Fig. 4. o

V. CONCLUSION

This paper presented a general approach for characterizing
interconnect circuitry at the board, package, and MCM sub-
strate levels using measured time-domain data. The technique
uses the dominant scattering poles and residues extracted from
TDR data as parameters for a circuit model, and can be
automated. The model may be implemented in a SPICE-based
simulator, and is evaluated in linear time. The approach models
delay and reflection introduced by interconnects, as well as
crosstalk between multiple conductors of varying geometries,
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as accurately as these effects can be measured. As a result,
large lumped-element models are not necessary to represent
distributed interconnect networks for which time-domain data
is available. Two-port and four-port example microstrip cir-
cuits were measured, characterized, and simulated, and the
results were compared with measured data to demonstrate the
validity of the approach.
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